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MemCNN

[image: CircleCI - Status master branch]
 [https://circleci.com/gh/silvandeleemput/memcnn/tree/master][image: Docker - Status]
 [https://hub.docker.com/r/silvandeleemput/memcnn][image: Documentation - Status master branch]
 [https://memcnn.readthedocs.io/en/latest/?badge=latest][image: Codacy - Branch grade]
 [https://app.codacy.com/project/silvandeleemput/memcnn/dashboardgit][image: Codecov - Status master branch]
 [https://codecov.io/gh/silvandeleemput/memcnn][image: PyPI - Latest release]
 [https://pypi.python.org/pypi/memcnn][image: Conda - Latest release]
 [https://anaconda.org/silvandeleemput/memcnn][image: PyPI - Implementation]
 [https://pypi.python.org/pypi/memcnn][image: PyPI - Python version]
 [https://pypi.python.org/pypi/memcnn][image: GitHub - Repository license]
 [https://github.com/silvandeleemput/memcnn/blob/master/LICENSE.txt][image: JOSS - DOI]
 [https://doi.org/10.21105/joss.01576]A PyTorch [http://pytorch.org/] framework for developing memory-efficient invertible neural networks.


	Free software: MIT license [https://github.com/silvandeleemput/memcnn/blob/master/LICENSE.txt] (please cite our work if you use it)


	Documentation: https://memcnn.readthedocs.io.


	Installation: https://memcnn.readthedocs.io/en/latest/installation.html





Features


	Enable memory savings during training by wrapping arbitrary invertible PyTorch functions with the InvertibleModuleWrapper class.


	Simple toggling of memory saving by setting the keep_input property of the InvertibleModuleWrapper.


	Turn arbitrary non-linear PyTorch functions into invertible versions using the AdditiveCoupling or the AffineCoupling classes.


	Training and evaluation code for reproducing RevNet experiments using MemCNN.


	CI tests for Python v2.7 and v3.7 and torch v0.4, v1.0, v1.1, and v1.4 with good code coverage.







Examples


Creating an AdditiveCoupling with memory savings

import torch
import torch.nn as nn
import memcnn


# define a new torch Module with a sequence of operations: Relu o BatchNorm2d o Conv2d
class ExampleOperation(nn.Module):
    def __init__(self, channels):
        super(ExampleOperation, self).__init__()
        self.seq = nn.Sequential(
                                    nn.Conv2d(in_channels=channels, out_channels=channels,
                                              kernel_size=(3, 3), padding=1),
                                    nn.BatchNorm2d(num_features=channels),
                                    nn.ReLU(inplace=True)
                                )

    def forward(self, x):
        return self.seq(x)


# generate some random input data (batch_size, num_channels, y_elements, x_elements)
X = torch.rand(2, 10, 8, 8)

# application of the operation(s) the normal way
model_normal = ExampleOperation(channels=10)
model_normal.eval()

Y = model_normal(X)

# turn the ExampleOperation invertible using an additive coupling
invertible_module = memcnn.AdditiveCoupling(
    Fm=ExampleOperation(channels=10 // 2),
    Gm=ExampleOperation(channels=10 // 2)
)

# test that it is actually a valid invertible module (has a valid inverse method)
assert memcnn.is_invertible_module(invertible_module, test_input_shape=X.shape)

# wrap our invertible_module using the InvertibleModuleWrapper and benefit from memory savings during training
invertible_module_wrapper = memcnn.InvertibleModuleWrapper(fn=invertible_module, keep_input=True, keep_input_inverse=True)

# by default the module is set to training, the following sets this to evaluation
# note that this is required to pass input tensors to the model with requires_grad=False (inference only)
invertible_module_wrapper.eval()

# test that the wrapped module is also a valid invertible module
assert memcnn.is_invertible_module(invertible_module_wrapper, test_input_shape=X.shape)

# compute the forward pass using the wrapper
Y2 = invertible_module_wrapper.forward(X)

# the input (X) can be approximated (X2) by applying the inverse method of the wrapper on Y2
X2 = invertible_module_wrapper.inverse(Y2)

# test that the input and approximation are similar
assert torch.allclose(X, X2, atol=1e-06)










Run PyTorch Experiments

After installing MemCNN run:

python -m memcnn.train [MODEL] [DATASET] [--fresh] [--no-cuda]






	Available values for DATASET are cifar10 and cifar100.


	Available values for MODEL are resnet32, resnet110, resnet164, revnet38, revnet110, revnet164


	Use the --fresh flag to remove earlier experiment results.


	Use the --no-cuda flag to train on the CPU rather than the GPU through CUDA.




Datasets are automatically downloaded if they are not available.

When using Python 3.* replace the python directive with the appropriate Python 3 directive. For example when using the MemCNN docker image use python3.6.

When MemCNN was installed using pip or from sources you might need to setup a configuration file before running this command.
Read the corresponding section about how to do this here: https://memcnn.readthedocs.io/en/latest/installation.html




Results

TensorFlow results were obtained from the reversible residual
network [https://arxiv.org/abs/1707.04585] running the code from
their GitHub [https://github.com/renmengye/revnet-public].

The PyTorch results listed were recomputed on June 11th 2018, and differ
from the results in the ICLR paper. The Tensorflow results are still the
same.


Prediction accuracy










	
	Cifar-10

	Cifar-100



	Model

	Tensorflow

	PyTorch

	Tensorflow

	PyTorch





	resnet-32

	92.74

	92.86

	69.10

	69.81



	resnet-110

	93.99

	93.55

	73.30

	72.40



	resnet-164

	94.57

	94.80

	76.79

	76.47



	revnet-38

	93.14

	92.80

	71.17

	69.90



	revnet-110

	94.02

	94.10

	74.00

	73.30



	revnet-164

	94.56

	94.90

	76.39

	76.90









Training time (hours : minutes)










	
	Cifar-10

	Cifar-100



	Model

	Tensorflow

	PyTorch

	Tensorflow

	PyTorch





	resnet-32

	2:04

	1:51

	1:58

	1:51



	resnet-110

	4:11

	2:51

	6:44

	2:39



	resnet-164

	11:05

	4:59

	10:59

	3:45



	revnet-38

	2:17

	2:09

	2:20

	2:16



	revnet-110

	6:59

	3:42

	7:03

	3:50



	revnet-164

	13:09

	7:21

	13:12

	7:17









Memory consumption of model training in PyTorch













	Layers

	Parameters

	Parameters (MB)

	Activations (MB)



	ResNet

	RevNet

	ResNet

	RevNet

	ResNet

	RevNet

	ResNet

	RevNet





	32

	38

	466906

	573994

	1.9

	2.3

	238.6

	85.6



	110

	110

	1730714

	1854890

	6.8

	7.3

	810.7

	85.7



	164

	164

	1704154

	1983786

	6.8

	7.9

	2452.8

	432.7






The ResNet model is the conventional Residual Network implementation in PyTorch, while
the RevNet model uses the memcnn.InvertibleModuleWrapper to achieve memory savings.






Works using MemCNN


	MemCNN: a Framework for Developing Memory Efficient Deep Invertible Networks [https://openreview.net/forum?id=r1KzqK1wz] by Sil C. van de Leemput et al.


	Reversible GANs for Memory-efficient Image-to-Image Translation [https://arxiv.org/abs/1902.02729] by Tycho van der Ouderaa et al.


	Chest CT Super-resolution and Domain-adaptation using Memory-efficient 3D Reversible GANs [https://openreview.net/forum?id=SkxueFsiFV] by Tycho van der Ouderaa et al.







Citation

Sil C. van de Leemput, Jonas Teuwen, Bram van Ginneken, and Rashindra Manniesing.
MemCNN: A Python/PyTorch package for creating memory-efficient invertible neural networks.
Journal of Open Source Software, 4, 1576, http://dx.doi.org/10.21105/joss.01576, 2019.

If you use our code, please cite:

@article{vandeLeemput2019MemCNN,
  journal = {Journal of Open Source Software},
  doi = {10.21105/joss.01576},
  issn = {2475-9066},
  number = {39},
  publisher = {The Open Journal},
  title = {MemCNN: A Python/PyTorch package for creating memory-efficient invertible neural networks},
  url = {http://dx.doi.org/10.21105/joss.01576},
  volume = {4},
  author = {Sil C. {van de} Leemput and Jonas Teuwen and Bram {van} Ginneken and Rashindra Manniesing},
  pages = {1576},
  date = {2019-07-30},
  year = {2019},
  month = {7},
  day = {30},
}











          

      

      

    

  

    
      
          
            
  
Installation


Requirements


	Python [https://python.org/] 2.7 or 3.5+


	PyTorch [http://pytorch.org/] 1.1 (0.4 downwards compatible, CUDA
support recommended)







Stable release

These are the preferred methods to install MemCNN, as they will always install the most recent stable release.


PyPi

To install MemCNN using the Python package manager, run this command in your terminal:

$ pip install memcnn





If you don’t have pip [https://pip.pypa.io] installed, this Python installation guide [http://docs.python-guide.org/en/latest/starting/installation/] can guide
you through the process.




Anaconda

To install MemCNN using Anaconda, run this command in your terminal:

$ conda install -c silvandeleemput -c pytorch -c simpleitk -c conda-forge memcnn





If you don’t have conda [https://www.anaconda.com/] installed, this Anaconda installation guide [https://docs.conda.io/projects/conda/en/latest/user-guide/install/] can guide
you through the process.






From sources

The sources for MemCNN can be downloaded from the Github repo [https://github.com/silvandeleemput/memcnn].

You can either clone the public repository:

$ git clone git://github.com/silvandeleemput/memcnn





Or download the tarball [https://github.com/silvandeleemput/memcnn/tarball/master]:

$ curl  -OL https://github.com/silvandeleemput/memcnn/tarball/master





Once you have a copy of the source, you can install it with:

$ python setup.py install








Using docker

MemCNN has several pre-build docker images that are hosted on dockerhub.
You can directly pull these and to have a working environment for running the experiments.


Run image from repository

Run the latest docker build of MemCNN from the repository (automatically pulls the image):

$ docker run --shm-size=4g --runtime=nvidia -it silvandeleemput/memcnn:latest





For --runtime=nvidia to work nvidia-docker [https://github.com/nvidia/nvidia-docker] must be installed on your system.
It can be omitted but this will drop GPU training support.

This will open a preconfigured bash shell, which is correctly configured
to run the experiments. The latest version has Ubuntu 18.04 and Python 3.7 installed.

By default, the datasets and experimental results will be put inside the created
docker container under: \home\user\data and
\home\user\experiments respectively.




Build image from source

Requirements:


	NVIDIA graphics card and the proper NVIDIA-drivers on your system




The following bash commands will clone this repository and do a one-time
build of the docker image with the right environment installed:

$ git clone https://github.com/silvandeleemput/memcnn.git
$ docker build ./memcnn/docker --tag=silvandeleemput/memcnn:latest





After the one-time install on your machine, the docker image can be invoked
using the same commands as listed above.






Experiment configuration file

To run the experiments, MemCNN requires setting up a configuration file containing locations to put the data files.
This step is not necessary for the docker builds.

The configuration file config.json goes in the /memcnn/config/ directory of the library and should be formatted as follows:

{
    "data_dir": "/home/user/data",
    "results_dir": "/home/user/experiments"
}






	data_dir    : location for storing the input training datasets


	results_dir : location for storing the experiment files during training




Change the data paths to your liking.

If you are unsure where MemCNN and/or the configuration file is located on your machine run:

$ python -m memcnn.train





If the configuration file is not setup correctly, this command should give the user the correct path to the configuration file.
Next, create/edit the file at the given location.







          

      

      

    

  

    
      
          
            
  
Usage

To use MemCNN in a project:

import memcnn






Examples


Creating an AdditiveCoupling with memory savings

import torch
import torch.nn as nn
import memcnn


# define a new torch Module with a sequence of operations: Relu o BatchNorm2d o Conv2d
class ExampleOperation(nn.Module):
    def __init__(self, channels):
        super(ExampleOperation, self).__init__()
        self.seq = nn.Sequential(
                                    nn.Conv2d(in_channels=channels, out_channels=channels,
                                              kernel_size=(3, 3), padding=1),
                                    nn.BatchNorm2d(num_features=channels),
                                    nn.ReLU(inplace=True)
                                )

    def forward(self, x):
        return self.seq(x)


# generate some random input data (batch_size, num_channels, y_elements, x_elements)
X = torch.rand(2, 10, 8, 8)

# application of the operation(s) the normal way
model_normal = ExampleOperation(channels=10)
model_normal.eval()

Y = model_normal(X)

# turn the ExampleOperation invertible using an additive coupling
invertible_module = memcnn.AdditiveCoupling(
    Fm=ExampleOperation(channels=10 // 2),
    Gm=ExampleOperation(channels=10 // 2)
)

# test that it is actually a valid invertible module (has a valid inverse method)
assert memcnn.is_invertible_module(invertible_module, test_input_shape=X.shape)

# wrap our invertible_module using the InvertibleModuleWrapper and benefit from memory savings during training
invertible_module_wrapper = memcnn.InvertibleModuleWrapper(fn=invertible_module, keep_input=True, keep_input_inverse=True)

# by default the module is set to training, the following sets this to evaluation
# note that this is required to pass input tensors to the model with requires_grad=False (inference only)
invertible_module_wrapper.eval()

# test that the wrapped module is also a valid invertible module
assert memcnn.is_invertible_module(invertible_module_wrapper, test_input_shape=X.shape)

# compute the forward pass using the wrapper
Y2 = invertible_module_wrapper.forward(X)

# the input (X) can be approximated (X2) by applying the inverse method of the wrapper on Y2
X2 = invertible_module_wrapper.inverse(Y2)

# test that the input and approximation are similar
assert torch.allclose(X, X2, atol=1e-06)










Run PyTorch Experiments

After installing MemCNN run:

python -m memcnn.train [MODEL] [DATASET] [--fresh] [--no-cuda]






	Available values for DATASET are cifar10 and cifar100.


	Available values for MODEL are resnet32, resnet110, resnet164, revnet38, revnet110, revnet164


	Use the --fresh flag to remove earlier experiment results.


	Use the --no-cuda flag to train on the CPU rather than the GPU through CUDA.




Datasets are automatically downloaded if they are not available.

When using Python 3.* replace the python directive with the appropriate Python 3 directive. For example when using the MemCNN docker image use python3.7.







          

      

      

    

  

    
      
          
            
  
Modules

Top-level package for MemCNN.


	
memcnn.is_invertible_module(module_in, test_input_shape, test_input_dtype=<sphinx.ext.autodoc.importer._MockObject object>, atol=1e-06)

	Test if a torch.nn.Module [https://pytorch.org/docs/stable/nn.html#torch.nn.Module] is invertible


	Parameters

	
	module_in (torch.nn.Module [https://pytorch.org/docs/stable/nn.html#torch.nn.Module]) – A torch.nn.Module to test.


	test_input_shape (tuple [https://docs.python.org/3/library/stdtypes.html#tuple]) – Dimensions of test tensor object to perform the test with.


	test_input_dtype (torch.dtype, optional) – Data type of test tensor object to perform the test with.


	atol (float [https://docs.python.org/3/library/functions.html#float], optional) – Tolerance value used for comparing the outputs






	Returns

	True if the input module is invertible, False otherwise.



	Return type

	bool [https://docs.python.org/3/library/functions.html#bool]










	
class memcnn.InvertibleModuleWrapper(fn, keep_input=False, keep_input_inverse=False, disable=False)

	The InvertibleModuleWrapper which enables memory savings during training by exploiting
the invertible properties of the wrapped module.


	Parameters

	
	fn (torch.nn.Module [https://pytorch.org/docs/stable/nn.html#torch.nn.Module]) – A torch.nn.Module which has a forward and an inverse function implemented with
\(x == m.inverse(m.forward(x))\)


	keep_input (bool [https://docs.python.org/3/library/functions.html#bool], optional) – Set to retain the input information on forward, by default it can be discarded since it will be
reconstructed upon the backward pass.


	keep_input_inverse (bool [https://docs.python.org/3/library/functions.html#bool], optional) – Set to retain the input information on inverse, by default it can be discarded since it will be
reconstructed upon the backward pass.


	disable (bool [https://docs.python.org/3/library/functions.html#bool], optional) – This will disable the detached graph approach with the backward hook.
Essentially this renders the function as y = fn(x) without any of the memory savings.
Setting this to true will also ignore the keep_input and keep_input_inverse properties.









	
keep_input

	Set to retain the input information on forward, by default it can be discarded since it will be
reconstructed upon the backward pass.


	Type

	bool [https://docs.python.org/3/library/functions.html#bool], optional










	
keep_input_inverse

	Set to retain the input information on inverse, by default it can be discarded since it will be
reconstructed upon the backward pass.


	Type

	bool [https://docs.python.org/3/library/functions.html#bool], optional










	Raises

	NotImplementedError [https://docs.python.org/3/library/exceptions.html#NotImplementedError] – If an unknown coupling or implementation is given.






	
forward(xin)

	Forward operation \(R(x) = y\)


	Parameters

	xin (torch.Tensor [https://pytorch.org/docs/stable/tensors.html#torch.Tensor]) – Input torch tensor.



	Returns

	Output torch tensor y.



	Return type

	torch.Tensor [https://pytorch.org/docs/stable/tensors.html#torch.Tensor]










	
inverse(yin)

	Inverse operation \(R^{-1}(y) = x\)


	Parameters

	yin (torch.Tensor [https://pytorch.org/docs/stable/tensors.html#torch.Tensor]) – Input torch tensor.



	Returns

	Output torch tensor x.



	Return type

	torch.Tensor [https://pytorch.org/docs/stable/tensors.html#torch.Tensor]














	
class memcnn.AdditiveCoupling(Fm, Gm=None, implementation_fwd=-1, implementation_bwd=-1)

	This computes the output \(y\) on forward given input \(x\) and arbitrary modules \(Fm\) and \(Gm\) according to:

\((x1, x2) = x\)

\(y1 = x1 + Fm(x2)\)

\(y2 = x2 + Gm(y1)\)

\(y = (y1, y2)\)


	Parameters

	
	Fm (torch.nn.Module [https://pytorch.org/docs/stable/nn.html#torch.nn.Module]) – A torch.nn.Module encapsulating an arbitrary function


	Gm (torch.nn.Module [https://pytorch.org/docs/stable/nn.html#torch.nn.Module]) – A torch.nn.Module encapsulating an arbitrary function
(If not specified a deepcopy of Fm is used as a Module)


	implementation_fwd (int [https://docs.python.org/3/library/functions.html#int]) – Switch between different Additive Operation implementations for forward pass. Default = -1


	implementation_bwd (int [https://docs.python.org/3/library/functions.html#int]) – Switch between different Additive Operation implementations for inverse pass. Default = -1













	
class memcnn.AffineCoupling(Fm, Gm=None, adapter=None, implementation_fwd=-1, implementation_bwd=-1)

	This computes the output \(y\) on forward given input \(x\) and arbitrary modules \(Fm\) and \(Gm\) according to:

\((x1, x2) = x\)

\((log({s1}), t1) = Fm(x2)\)

\(s1 = exp(log({s1}))\)

\(y1 = s1 * x1 + t1\)

\((log({s2}), t2) = Gm(y1)\)

\(s2 = exp(log({s2}))\)

\(y2 = s2 * x2 + t2\)

\(y = (y1, y2)\)


	Parameters

	
	Fm (torch.nn.Module [https://pytorch.org/docs/stable/nn.html#torch.nn.Module]) – A torch.nn.Module encapsulating an arbitrary function


	Gm (torch.nn.Module [https://pytorch.org/docs/stable/nn.html#torch.nn.Module]) – A torch.nn.Module encapsulating an arbitrary function
(If not specified a deepcopy of Gm is used as a Module)


	adapter (torch.nn.Module [https://pytorch.org/docs/stable/nn.html#torch.nn.Module] class) – An optional wrapper class A for Fm and Gm which must output
s, t = A(x) with shape(s) = shape(t) = shape(x)
s, t are respectively the scale and shift tensors for the affine coupling.


	implementation_fwd (int [https://docs.python.org/3/library/functions.html#int]) – Switch between different Affine Operation implementations for forward pass. Default = -1


	implementation_bwd (int [https://docs.python.org/3/library/functions.html#int]) – Switch between different Affine Operation implementations for inverse pass. Default = -1













	
class memcnn.AffineAdapterNaive(module)

	Naive Affine adapter

Outputs exp(f(x)), f(x) given f(.) and x






	
class memcnn.AffineAdapterSigmoid(module)

	Sigmoid based affine adapter

Partitions the output h of f(x) = h into s and t by extracting every odd and even channel
Outputs sigmoid(s), t






	
class memcnn.ReversibleBlock(Fm, Gm=None, coupling='additive', keep_input=False, keep_input_inverse=False, implementation_fwd=-1, implementation_bwd=-1, adapter=None)

	The ReversibleBlock


Warning

This class has been deprecated. Use the more flexible InvertibleModuleWrapper class.




Note

The implementation_fwd and implementation_bwd parameters can be set to one of the following implementations:


	-1 Naive implementation without reconstruction on the backward pass.


	0  Memory efficient implementation, compute gradients directly.


	1  Memory efficient implementation, similar to approach in Gomez et al. 2017.







	Parameters

	
	Fm (torch.nn.Module [https://pytorch.org/docs/stable/nn.html#torch.nn.Module]) – A torch.nn.Module encapsulating an arbitrary function


	Gm (torch.nn.Module [https://pytorch.org/docs/stable/nn.html#torch.nn.Module], optional) – A torch.nn.Module encapsulating an arbitrary function
(If not specified a deepcopy of Fm is used as a Module)


	coupling (str [https://docs.python.org/3/library/stdtypes.html#str], optional) – Type of coupling [‘additive’, ‘affine’]. Default = ‘additive’


	keep_input (bool [https://docs.python.org/3/library/functions.html#bool], optional) – Set to retain the input information on forward, by default it can be discarded since it will be
reconstructed upon the backward pass.


	keep_input_inverse (bool [https://docs.python.org/3/library/functions.html#bool], optional) – Set to retain the input information on inverse, by default it can be discarded since it will be
reconstructed upon the backward pass.


	implementation_fwd (int [https://docs.python.org/3/library/functions.html#int], optional) – Switch between different Operation implementations for forward training (Default = 1).
If using the naive implementation (-1) then keep_input should be True.


	implementation_bwd (int [https://docs.python.org/3/library/functions.html#int], optional) – Switch between different Operation implementations for backward training (Default = 1).
If using the naive implementation (-1) then keep_input_inverse should be True.


	adapter (class, optional) – Only relevant when using the ‘affine’ coupling.
Should be a class of type torch.nn.Module [https://pytorch.org/docs/stable/nn.html#torch.nn.Module] that serves as an
optional wrapper class A for Fm and Gm which must output
s, t = A(x) with shape(s) = shape(t) = shape(x).
s, t are respectively the scale and shift tensors for the affine coupling.









	
keep_input

	Set to retain the input information on forward, by default it can be discarded since it will be
reconstructed upon the backward pass.


	Type

	bool [https://docs.python.org/3/library/functions.html#bool], optional










	
keep_input_inverse

	Set to retain the input information on inverse, by default it can be discarded since it will be
reconstructed upon the backward pass.


	Type

	bool [https://docs.python.org/3/library/functions.html#bool], optional










	Raises

	NotImplementedError [https://docs.python.org/3/library/exceptions.html#NotImplementedError] – If an unknown coupling or implementation is given.






	
forward(xin)

	Forward operation \(R(x) = y\)


	Parameters

	xin (torch.Tensor [https://pytorch.org/docs/stable/tensors.html#torch.Tensor]) – Input torch tensor.



	Returns

	Output torch tensor y.



	Return type

	torch.Tensor [https://pytorch.org/docs/stable/tensors.html#torch.Tensor]










	
inverse(yin)

	Inverse operation \(R^{-1}(y) = x\)


	Parameters

	yin (torch.Tensor [https://pytorch.org/docs/stable/tensors.html#torch.Tensor]) – Input torch tensor.



	Returns

	Output torch tensor x.



	Return type

	torch.Tensor [https://pytorch.org/docs/stable/tensors.html#torch.Tensor]

















          

      

      

    

  

    
      
          
            
  
Contributing

Contributions are welcome, and they are greatly appreciated! Every little bit
helps, and credit will always be given.

You can contribute in many ways:


Types of Contributions


Report Bugs

Report bugs at https://github.com/silvandeleemput/memcnn/issues.

If you are reporting a bug, please include:


	Your operating system name and version.


	Any details about your local setup that might be helpful in troubleshooting.


	Detailed steps to reproduce the bug.







Fix Bugs

Look through the GitHub issues for bugs. Anything tagged with “bug” and “help
wanted” is open to whoever wants to implement it.




Implement Features

Look through the GitHub issues for features. Anything tagged with “enhancement”
and “help wanted” is open to whoever wants to implement it.




Write Documentation

MemCNN could always use more documentation, whether as part of the
official MemCNN docs, in docstrings, or even on the web in blog posts,
articles, and such.




Submit Feedback

The best way to send feedback is to file an issue at https://github.com/silvandeleemput/memcnn/issues.

If you are proposing a feature:


	Explain in detail how it would work.


	Keep the scope as narrow as possible, to make it easier to implement.


	Remember that this is a volunteer-driven project, and that contributions
are welcome :)









Get Started!

Ready to contribute? Here’s how to set up memcnn for local development.


	Fork the memcnn repo on GitHub.


	Clone your fork locally:

$ git clone git@github.com:your_name_here/memcnn.git







	Install your local copy into a virtualenv. Assuming you have virtualenvwrapper installed, this is how you set up your fork for local development:

$ mkvirtualenv memcnn
$ cd memcnn/
$ python setup.py develop







	Create a branch for local development:

$ git checkout -b name-of-your-bugfix-or-feature





Now you can make your changes locally.



	When you’re done making changes, check that your changes pass flake8 and the
tests, including testing other Python versions with tox:

$ flake8 memcnn tests
$ python setup.py test or py.test
$ tox





To get flake8 and tox, just pip install them into your virtualenv.



	Commit your changes and push your branch to GitHub:

$ git add .
$ git commit -m "Your detailed description of your changes."
$ git push origin name-of-your-bugfix-or-feature







	Submit a pull request through the GitHub website.







Pull Request Guidelines

Before you submit a pull request, check that it meets these guidelines:


	The pull request should include tests.


	If the pull request adds functionality, the docs should be updated. Put
your new functionality into a function with a docstring, and add the
feature to the list in README.rst.


	The pull request should work for Python 2.7, 3.5+, and for PyPy. Check
through tox that all the tests pass for all supported Python versions.







Tips

To run a subset of tests:

$ pytest memcnn/memcnn/models/tests/test_revop.py





To run a specific test:

$ pytest memcnn/memcnn/models/tests/test_revop.py::test_reversible_block_fwd_bwd








Deploying

A reminder for the maintainers on how to deploy.
Make sure all your changes are committed (including an entry in HISTORY.rst).
Then run:

$ bumpversion patch # possible: major / minor / patch
$ git push
$ git push origin <tag_name>





CircleCI will then deploy to PyPI if tests pass.
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History


1.2.1 (2020-02-24)


	Added InvertibleModuleWrapper support to is_invertible_module test







1.2.0 (2020-01-19)


	Replaced TensorBoard logging with simple json file logging which removed the cumbersome TensorBoard and TensorFlow dependencies


	Updated the Dockerfile for Python37 and PyTorch 1.4.0


	Updated the CI tests Py36 versions to Py37, also added a new CI test for PyTorch 1.4.0







1.1.1 (2020-01-11)


	Fixed some versions in the requirements for TensorFlow and Pillow to avoid errors and segfaults


	The module auto documentation has been updated for the new API changes







1.1.0 (2019-12-15)


	A complete refactor of MemCNN with changes to the API


	Factored out the code responsible for the memory savings in a separate InvertibleModuleWrapper and reimplemented it using hooks


	The InvertibleModuleWrapper allows for arbitrary invertible functions now (not just the additive and affine couplings)


	The AdditiveBlock and AffineBlock have been refactored to AdditiveCoupling and AffineCoupling


	The ReveribleBlock is now deprecated


	The documentation and examples have been updated for the new API changes







1.0.1 (2019-12-08)


	Bug fixes related to SummaryIterator import in Tensorflow 2
(location of summary_iterator has changed in TensorFlow)


	Bug fixes related to NSamplesRandomSampler nsamples attribute
(would crash if no-gpu and numpy.int were given)







1.0.0 (2019-07-28)


	Major release for completing the JOSS review:


	Anaconda cloud and codacy code quality CI


	Updated/improved documentation







0.3.5 (2019-07-28)


	Added CI for anaconda cloud


	Documented conda installation steps


	Minor test release for testing CI build







0.3.4 (2019-07-26)


	Performed changes recommended by JOSS reviewers:


	Added requirements.txt to manifest.in


	Added codacy code quality integration


	Improved documentation


	Setup proper github contribution templates







0.3.3 (2019-07-10)


	Added docker build triggers to CI


	Finalized JOSS paper.md







0.3.2 (2019-07-10)


	Added docker build shield


	Fixed a bug with device agnostic tensor generation for loss.py


	Code cleanup resnet.py


	Added examples to distribution with pytests


	Improved documentation







0.3.1 (2019-07-09)


	Added experiments.json and config.json.example data files to the distribution


	Fixed documentation issues with mock modules







0.3.0 (2019-07-09)


	Updated major bug in distribution setup.py


	Removed older releases due to bug


	Added the ReversibleBlock at the module level


	Splitted keep_input into keep_input and keep_input_inverse







0.2.1 (2019-06-06 - Removed)


	Patched the memory saving tests







0.2.0 (2019-05-28 - Removed)


	Minor update with better coverage and affine coupling support







0.1.0 (2019-05-24 - Removed)


	First release on PyPI
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  After installing MemCNN run:

python -m memcnn.train [MODEL] [DATASET] [--fresh] [--no-cuda]






	Available values for DATASET are cifar10 and cifar100.


	Available values for MODEL are resnet32, resnet110, resnet164, revnet38, revnet110, revnet164


	Use the --fresh flag to remove earlier experiment results.


	Use the --no-cuda flag to train on the CPU rather than the GPU through CUDA.




Datasets are automatically downloaded if they are not available.

When using Python 3.* replace the python directive with the appropriate Python 3 directive. For example when using the MemCNN docker image use python3.7.
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